- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Dongxiao, Zhang (1)
-
Hao, Xu (1)
-
Hongguang, Sun (1)
-
Xiangnan, Yu (1)
-
Yong, Zhang (1)
-
Yuntian, Chen (1)
-
Zhibo, Chen (1)
-
Zhiping, Mao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In complex physical systems, conventional differential equations fall short in capturing non-local and memory effects. Fractional differential equations (FDEs) effectively model long-range interactions with fewer parameters. However, deriving FDEs from physical principles remains a significant challenge. This study introduces a stepwise data-driven framework to discover explicit expressions of FDEs directly from data. The proposed framework combines deep neural networks for data reconstruction and automatic differentiation with Gauss-Jacobi quadrature for fractional derivative approximation, effectively handling singularities while achieving fast, high-precision computations across large temporal/spatial scales. To optimize both linear coefficients and the nonlinear fractional orders, we employ an alternating optimization approach that combines sparse regression with global optimization techniques. We validate the framework on various datasets, including synthetic anomalous diffusion data, experimental data on the creep behavior of frozen soils, and single-particle trajectories modeled by Lévy motion. Results demonstrate the framework’s robustness in identifying FDE structures across diverse noise levels and its ability to capture integer order dynamics, offering a flexible approach for modeling memory effects in complex systems.more » « lessFree, publicly-accessible full text available May 26, 2026
An official website of the United States government
